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Abstract—An edge coloring of a graph G is a process of 

assigning colors to the adjacent edges so that the adjacent edges 

represents the different colors. In this paper, an algorithm is 

proposed to find the perfect color matching of the regular 

bipartite multigraph with low time complexity. For that, the 

proposed algorithm is divided into two procedures. In the first 

procedure, the possible circuits and bad edges are extracted from 

the regular bipartite graph. In the second procedure, the bad 

edges are rearranged to obtain the perfect color matching. The 

depth first search (DFS) algorithm is used in this paper for 

traversing the bipartite vertices to find the closed path, open 

path, incomplete components, and bad edges. By the proposed 

algorithm, the proper edge coloring of D – regular bipartite 

multi-graph can be obtained in O (D.V) time. 

Keywords—matching; edge-coloring; complexity; bipartite 

multigraph; DFS 

I. INTRODUCTION 

An edge coloring of a Graph is one of the well-known, 
exoteric researched topics in the arena of graph theory. Edge 
coloring of a graph G is used various colors, so that, the 
adjacent edges are obtained different colors. By using this 
concept of edge coloring many real-world problems can be 
solved. An edge coloring has applications in scheduling 
problems and in frequency assignment for fiber optic 
networks. It also used to solve the timetabling problem, 
register allocation, pattern matching, designing seating plans, 
solving Sudoku puzzles and so on. 

This section provides a descriptive summary of some 
methods that have been implemented and tested at graph 
theory for solving edge coloring problems. This topic has 
gained importance for the purpose of efficient edge color 
matching in the different graphs. For example, in [1], proposed 
a method for edge coloring in which every (3, Δ)-bipartite 
graph G, chromatic index ≤ 4Δ. This paper only considered the 
(3, Δ)-bipartite simple graph. In [2], proposed an edge coloring 
method for course timetabling. One-sided interval colorings of 
a bipartite graph method are introduced in [3]. For any graph 
G with bipartite set (X, Y) where authors present upper   
    

 (G, X) for classes of bipartite graphs G with maximum 

degree ∆ (G) at most 9. In particular, if ∆ (G) = 4, then      
  

(G, X) ≤ 6 and so on. In [4], authors derived a theorem to find 

the closed paths from C =MN for matching M and N. A 

closed path C can be found in (|C|) time on average. This 
theorem helped to develop the proposed algorithm for minimal 
edge-coloring. This concept of open and closed path can be 
easily obtained from this theorem. 

In [5], showed a theorem in which any edge color 
matching of a complete bipartite graph Kn,n contains 18 
vertexes with three colors. This method creates disjoint 
monochromatic cycles which together cover all vertices. The 
minimum number of cycles is required for this type of 
covering is 5. In [6], proposed an algorithm to find out two 
disjoint matching M1 and M2 for a given (X, Y) bipartite graph 

with set SX, where, M1 saturates X and M2 saturates S. The 
problem was solved by finding and appropriate factor of the 
graph when |S|≥|X|-1. In [7], proved a method for two bipartite 
graphs G and H, where, H is a fixed graph whose vertices will 
be shown as colors. And H-coloring of a graph G is a process 
of assigning colors for preserving adjacency in graph G. 

In this paper, an algorithm is proposed that is developed to 
find a perfect color matching of a regular bipartite multigraph. 
This is done by dealing edge coloring with lower time 
complexity. For that, the proposed method is divided into 
some parts that are run with an independent time complexity 
and helps to reduce the overall time complexity. 

The edge coloring of a bipartite multigraph is highly 
related to finding a perfect matching efficiently. To obtain the 
perfect edge color matching the proposed method is divided 
into two parts. In the first part, the Depth First Search (DFS) 
algorithm is used to extract the closed and opened path circuits 
as well as bad edges. In the second part, the bad edges are 
rearranged to find the perfect edge color matching. 

The rest of the paper is organized as follows. The 
preliminaries of the graph theory are described in Section II. 
The proposed minimal edge color matching algorithm is 
introduced in the next section. Case studies are described in 
Section IV. Experimental results and discussions are explained 
in Section V. The papers are concluded in Section VI. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 3, 2017 

251 | P a g e  

www.ijacsa.thesai.org 

II. PRELIMINARIES 

A Graph G is an ordered pair G = (V, E) along with a set V 
of vertices, nodes or points simultaneously with a set E of 
edges, which are two elements subsets of V. On the other 
hand, Graph coloring problem is a process of marking out 
colors from definitive components of a graph subject to certain 
obligations. There are two terms of Graph coloring which are 
edge coloring and vertex coloring. In this paper, an algorithm 
is developed for edge coloring. A Graph is said to be regular 
when every vertex has the same degree. Where, a graph is said 
to be bipartite which has vertices and also can be separated 
into two disuniting sets (U, V). Multigraph is a graph which 
has multiple edges and all the edges have similar finishing 
nodes. The edges associate with a vertex inside U to another 
one V is termed as a closed path. On the other hand, a path in 
which the first and last vertices are distinct is thread as an 
open path. Furthermore, a matching in a graph G is a set of 
pairwise disjoint edges. The edge coloring of bipartite 
multigraph is highly related to find a perfect matching 
efficiently. 

III. ALGORITHM FOR MINIMAL EDGE COLORING 

Assume that, G (V, E) is a regular graph. To achieve this 
regular graph every vertex added the edges such that every 
vertex has degree exactly D. In the whole description the 
graph circuits are considered as a closed path, whereas, the set 
of paths may consist of opened paths and/or closed paths. So, 
when a path sets are considered then there may be consisting 
of opened paths or closed paths. 

The method of Alexander Schriver’s [4] is applied in this 
paper. In that paper, the authors derived a theorem to find the 

closed paths of C=M N for matching M and N and a closed 

path C can be found in |(C)| time on average. Accordingly, 
the regular matching from the graph is computed to extract the 
close and open paths. The matching is colored and removed 
from the graph. This process is applied recursively to extract 
all matching. 

Let, C1, C2, .... are closed paths that can be constructed 
from the graph G. Let, VC1, VC2, ..... are the set of vertices of 
the closed path C1, C2, .... respectively. In this paper some 
closed paths are found i.e., C1, C2, .... such that 

Vc1Vc2....V and Vc1Vc2....=. This means more than 
one closed path from a graph G can be received, where the 
vertices are disjoint. These received closed paths are produce 
two full matching. However, it is not possible to get closed 
paths that cover entire vertex in G. If it is possible to add two 
full matching of G then it may possible to obtain one or more 
closed path. So, after receiving D/2 closed path sets another 
set of edges are found that holds at most V edges. Note that, at 
most V number of edges in closed path set can be found. And 
to achieve these it may needs to find the closed path for 
several times. 

Theorem 1: A perfect matching in a regular bipartite graph 

can be found in  (V) time. 

Proof: To prove this theorem, in this paper the 
Alexander Schriver’s [4] is considered to get the perfect 

matching. It is proved from [4] is that it takes |(C)| time to 
get a closed path and edges in the closed path are equally 
decomposed into two matchings. If the average open path size 

is L then it will take (L) times to get the opened paths. 
According to Alexander Schriver’s, the union of the two 
matching construct at least one closed path. It is also possible 
to get more than one disjoint closed paths and/or open paths by 
the union of two full matching. 

In this proposed method, one or more disjoint paths are 
taken such that each vertex reduces its degree by maximum 
two. This process will be continued by using DFS. After that, 
checking each closed path where the number of vertices must 
be equal to the number of edges. If this condition is not 
satisfied then start the DFS again to find another closed path. 
After getting the entire closed path, the process is terminated 
and starts to get the open paths. In the normal situations all the 
vertices in G within the closed path set couldn’t be found. 
However, using this theorem the maximum number of closed 
path can be found. There are many vertices that are not visited 
in the graph. For that, find one or more opened path associated 
with these non-visited vertices and decomposes them into two 
matchings. 

In this method, the maximum V/2 number of closed path or 
V/2 number of opened path can be found in each time and 
maximum V number odd edges can be found in the paths. 
Every closed or opened path will possibly be minimized by its 
length. Then the closed and opened path’s edges are 
alternatively distributed into two matching. While finding the 

paths in this method is required V+V/2 =  (V) time. Hence,  
(V) time is needed to find a perfect matching. 

Theorem 2: A proper edge coloring of a D-regular 

bipartite multigraph can be found in  (D.V) time. 

Proof:  According to Theorem 1 all closed path set can be 
computed by D/2 times and found D number of matching. 
However, all time these types of matching are not possible by 
this theorem. For this reason, two different processes are 
required for finding the D number of matching. In process 1, 
the possible closed and opened paths are extracted from the 
graph. And the incomplete component can be identified as bad 
edges. In process 2, the bad edges are rearranged at incomplete 
matching to find the D number of matching. 

Procedure 1: Extraction of possible paths 

Step1:  Taking a node from graph for finding closed path 

Fig. 1(a) is the processing example to describe the steps of 
the theorem. For finding the closed path from the graph, the 
searching is started from vertex 1 in Fig. 1(a). 

Step 2: From the starting node a closed path using DFS is 
found and is removed it from the graph 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 3, 2017 

252 | P a g e  

www.ijacsa.thesai.org 

    
                (a)                                              (b)                                           (c) 

Fig. 1. Processing example: a) 4-regular bipartite multi-graph, b) first closed 
path with vertex 1, 2, 3, 6 c) all closed path from Fig. 1(a) 

As the graph which contains the 10 vertices with degree 4. 
The closed and opened paths are obtained by reducing each 
vertex degree by two.  According to step 2, from the starting 
node 1 the first closed path is found with the vertex 1, 2, 3, 6, 
1 is shown in Fig. 1(b). By traversing the graph using the DFS 
the closed paths are obtained that are shown in Fig. 1(c). 

Step 3: The edges in the closed path are distributed into 
two matching 

The closed path in the Fig. 1(b) is distributed in two path 
set shown in Fig. 2(a) and Fig. 2(b).  The closed paths that are 
in the Fig. 1(c) are distributed into two paths shown in Fig. 
2(c) and Fig. 2(d). 

 
               (a)                                 (b)                               (c)                                (d) 

Fig. 2. The processing example of edge distribution for matching: a) and b) 

matching from Fig. 1(b), c) and b) matching form Fig. 1(c) 

Step 4: If all the vertices are not traversed then repeat the 
process from Step 1 to Step 3 for non-visited vertices 

 
                                                                                                            (a)                                                 (b)                                         (c)           

Fig. 3. Processing example of closed path extraction by repeated process: a) 

the closed path by repeated process, b) and c) matching from Fig. 3(a) 

Since the vertices 9 and 10 in Fig. 1(a) are not visited by 
the DFS, Step 1 to step 3 have to be repeated. This repeating 
procedure traces the other closed paths that are not extracted 
by the previous steps shown in Fig. 3(a). The closed path in 
the Fig. 3(a) is distributed in two path sets that are shown in 
Fig. 3(b) and Fig. 3(c). 

Step 5: If the remaining vertices do not make closed paths 
then start to find the opened paths 

 
                                    (a)                                                        (b) 

Fig. 4. The processing example of finding the opened path: a) and b) opened 

a paths from Fig. 1(a) 

The opened path can be obtained from the vertices that are 
not used in the closed path. According to the Fig. 1(c), vertex 
9 and 10 are not used to create any closed path. From Fig. 
3(a), vertex 7 and 6 are not used to create any closed path. 
Those vertices are not connected by any edge. However, 
according to Fig. 1(a), vertex 9 and 10 as well as vertex 7 and 
6 are connected by two separated edges. These separate edges 
are considered as opened path that are shown in Fig. 4(a) and 
Fig. 4(b). 

Step 6: The edges of an opened path will be distributed in 
the matching (matching found in step 3). 

                                     
                                            (a)                                                      (b)                    

Fig. 5. The processing example of distributing opened paths into the 
matching: a) and b) open path in Fig. 4(a) and Fig. 4(b) are distributed into 

matching in Fig. 2(c) and Fig. 2(d) 

The opened path shows in Fig. 4(a) and Fig. 4(b) are 
distributed in any two incomplete matching from Fig. 2(c), 
Fig. 2(d) as well as Fig. 3(b), and Fig. 3(c).  In this case, the 
opened path in Fig. 4(a) and Fig. 4(b) are distributed in 
incomplete matching in Fig. 2(c) and Fig. 3(c) respectively. 
The remaining incomplete matching will be reconstructed in 
the procedure two. 
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Step 7: While all the vertices are traversed then switch for 
the next closed path set. 

 
                                (a)                                                             (b) 

Fig. 6. The processing example of extracting components: a) components 

from the Fig. 2(d), b) components from the Fig. 3(b) 

Step 8: Identify the component’s (the vertices that have no 
edges) of an incomplete matching in a set 

Since, the Fig. 2(d) and Fig. 3(b) are contained 
components, i.e., vertex 9, 10 and vertex 7, 6. That’s why; Fig. 
2(d) and Fig. 3(b) are considered as incomplete matching. 

After D/2 iteration, the process terminates, and gets D/2 
numbers of incomplete matching and D/2 number of complete 
matchings. According to the processing example, each vertex 
has a degree of 4.  The iteration process is performed in this 
processing example is two which is 4/2=2. 

The algorithm in procedure 1 runs in O (D.V) time. This is 
obtained by multiplication of the number of paths being found 
and the total number of edges in the paths by D/2 iteration, 

i.e., D/2*(V+ (V/2)) =3DV/4=  (D.V). 

After completing the procedure 1, there may exist many 
edges in the graph G that are not used while creating the 
closed and opened path are considered as bad edges. 

Procedure 2: Finding the bad edges and rearranging them 
for perfect matching 

Step 1: The remaining bad edges need to be re-distributed 
into an incomplete matching i.e., Fig. 2(d) and Fig. 3(b). 
According to the Fig. 1(a) only two edges are not used while 
creating the closed path that is edge(7, 10) and edge (9, 6) 
shown in Fig. 7(a).  The bad edges are re-distributed into 
incomplete matching of Fig.  2(d). 

 
             (a)                              (b)                         (c)                            (d) 

Fig. 7. The processing example of the bad edges: a) bad edges from Fig. 

1(a), b) adjacent 
edges after inserting the bad edge in Fig. 2(d), c) final bad edge set, d) final 

distribution of the bad edges 

To re-distribute the bad edges of Fig. 7(a) into an 
incomplete matching i.e., Fig. 2(d), firstly traverse the 
incomplete matching by DFS to find the component. Here, the 
component is vertex 9 in Fig. 2(d). After that, remove the bad 
edge that is connected to vertex 9 from the bad edge set. This 
bad edge insertion may cause two adjacent edges in the 
matching as shown in Fig. 7(b). In this case, the bad edge that 
is connected to the vertex 9 is removed from the bad edge set 
and inserts into the other adjacent edge in the bad edge set i.e., 
edge (1, 6) as shown in Fig. 7(c). Finally, insert all the edges 
from Fig. 2(d) into Fig. 7(c) except the board edges shown in 
Fig. 7(d). Similarly, the bad edges are also re-distributed into 
incomplete matching of Fig. 3(b) is shown in Fig. 8. 
According to procedure one, two complete matching are found 
that are shown in Fig. 9(a) and Fig. 9(b) with different colors. 
By procedure two, another two complete matching are found 
that are shown in Fig. 10(a) and Fig. 10(b) with other different 
colors. 

 
                 (a)                             (b)                            (c)                          (d) 

Fig. 8. The processing example of the bad edges: a) bad edges from Fig. 

1(a), b) adjacent 
edges after inserting the bad edge in Fig. 3(b), c) final bad edge set, d) final 

distribution of the bad edges 

 
                                                  (a)                                            (b)  

Fig. 9. The processing example of complete matching: (a) and (b) complete 

matching from procedure one, c) and d) complete matching from procedure 
one 

 
(a) (b)    

Fig. 10. The processing example of complete matching: (a) and (b) complete 

matching from procedure two, c) and d) complete matching from procedure 

two 
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The perfect edge coloring of Fig. 1(a) is found after 
combining all the complete matching in Fig. 9 and Fig. 10 that 
is shown in Fig.11. 

Step 2: If it is unable to redistribute the bad edges in the 
incomplete matching then the same process can be followed 
for full matching and incomplete matching sequentially until 
re-distributed the bad edges into the D-matching’s. 

After  (D.V) times, the bad edge sets and the disjoint 
vertex sets are similar and re-distributed them according to the 
matching. After finding D-matching color the edges are 

colored into D-color. This part of the algorithm takes  (D.V) 
times. Because each bad edge has (2D-2) adjacent edges, so, to 
re-distribute each bad edge to a matching perfectly, it needs 
maximum (2D-2) iteration. So maximum V number of bad 

edges needs to iterate for V*(2D-2) = 2D.V-2V =  (D.V) 
times on average. 

So, the overall time complexity of edge color matching 
algorithm is O (D.V) +O (D.V) =O (D.V). 

 
Fig. 11. The processing example of final color matching: the final edge 

coloring of Fig. 1 with perfect matching 

IV. CASE STUDY 

Case 1:  In the following case study shows a bipartite 
graph that has 8 vertices, 16 edges and maximum degree 4. 
Here, the graph is 4-regular. 

 

Fig. 12. The processing example of the case study: A regular bipartite 

multigraph with 8 vertices and degree 4 

 
(a)                                          (b) 

Fig. 13. The processing example of finding closed paths from Fig. 12: a) and 

b) the set of closed paths from Fig. 12 

Fig. 13(a) and Fig. 13(b) shows two sets of the closed path 
from which four matching can be achieved that are shown in 
Fig. 14 and Fig. 15. Fig. 14 shows two matching that is 
achieved from the Fig. 13(a) closed path sets. And Fig. 15 
shows two matching which is achieved from the Fig. 13(b) 
closed path sets. 

 
                                                    (a)                                           (b)                                                                          

Fig. 14. Processing example of matching found: a) and b) matching from Fig. 

13(a) 

 
                                                    (a)                                           (b)                                                                          

Fig. 15. The processing example of matching: a) and b) matching from Fig. 
13(b) 

After getting these four matching shown in Fig. 14 and 
Fig. 15 color the edges of each matching with separate colors 
to represent the edge color matching shown in Fig. 16. 
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Fig. 16. Processing example final color matching: the final edge coloring of 

Fig. 11 with perfect matching 

Case 2: In the following case study shows a bipartite graph 
that has 10 vertices, 20 edges and maximum degree 4 with 1 
multiple edges. 

 
(a)                                           (b) 

Fig. 17. The edge coloring of with perfect matching: a) input graph and b) 

final edge coloring with perfect matching 

Case 3: This is a regular bipartite graph with no multiple 
edges. This graph consists of 20 edges, 10 vertices and 4 edges 
in every vertex, i.e., degree 4. 

 
(a)                                           (b) 

Fig. 18. The edge coloring of with perfect matching: a) input graph and b) 

final edge coloring with perfect matching                    

V. EXPERIMENTAL RESULTS 

In this paper, four different types of bipartite graph 
including multi-graphs are used to verify the proposed edge 
color matching algorithm. The first graph is used in the 

processing example and describes the proposed algorithm step 
by step. Other three graphs are shown in the case study, where 
case 1 is explained shortly with processing example. Case 2 
and case 3 are shows the output only. The experimental results 
run time of procedure 1 that is described in Theorem 2 for the 
four types of the regular bipartite graph is shown in Table I. 
Accordingly, the experimental results run time of procedure 2 
that is describes in Theorem 2 for the four types of the regular 
bipartite graph is shown in Table II. From the experimental 
result in Table I and Table II it is seen that total runtime is less 
than O (D.V). 

TABLE. I. THE EXPERIMENTAL RUNTIME FOR PROCEDURE 1 THEOREM 2 

Input Graph 
Number of 
vertices (V) 

Degree of the  
graph (D) 

Runtime for 
procedure 1 

Processing example 
(Fig. 1(a)) 

8 
4 
 

16 

Case 1 (Fig. 11(a)) 10 4 33 

Case 2 (Fig. 14(a)) 10 4 34 

Case 3 (Fig. 15(a)) 10 4 26 

TABLE. II. THE EXPERIMENTAL RUNTIME FOR PROCEDURE 2 THEOREM 2 

Input Graph 
Number of 
vertices (V) 

Degree of the  
graph (D) 

Runtime for 
procedure 1 

Processing example 
(Fig. 1(a)) 

8 4 0 

Case 1 (Fig. 11(a)) 10 4 4 

Case 2 (Fig. 14(a)) 10 4 4 

Case 3 (Fig. 15(a)) 10 4 14 

VI. CONCLUSIONS 

This paper has been presented an algorithm of edge 
coloring for finding perfect matching. This paper considered 
the regular bipartite multigraphs. To prove the algorithm two 
theorems for edge coloring is considered. The first theorem 
shows the perfect matching of a regular bipartite graph and the 
second theorem shows proper edge coloring of a D-regular 
bipartite multigraph. The overall time complexity of the 
proposed edge color matching algorithm is O (D.V) +O (D.V 
= O (D.V) times. The algorithm reduces overall time 
complexity. Experimental results show that the total runtime is 

less than  (D.V) time. A graph with large vertex cannot be 
considered with the proposed theorem. In future, this work 
will be extended to develop an algorithm in order to solve the 
large volume of the graph. 
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