
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

250 | P a g e

www.ijacsa.thesai.org

A Low Complexity based Edge Color Matching

Algorithm for Regular Bipartite Multigraph

Rezaul Karim

Dept. of Computer Science & Engineering

University of Chittagong (CU)

Chittagong, Bangladesh

Muhammad Mahbub Hasan Rony

Dept. of Computer Science & Engineering

International Islamic University Chittagong (IIUC)

Chittagong, Bangladesh

Md. Rashedul Islam

Dept. of Computer Science & Engineering

International Islamic University Chittagong (IIUC)

Chittagong, Bangladesh

Md. Khaliluzzaman*

Dept. of Computer Science & Engineering

International Islamic University Chittagong (IIUC)

Chittagong, Bangladesh

Abstract—An edge coloring of a graph G is a process of

assigning colors to the adjacent edges so that the adjacent edges

represents the different colors. In this paper, an algorithm is

proposed to find the perfect color matching of the regular

bipartite multigraph with low time complexity. For that, the

proposed algorithm is divided into two procedures. In the first

procedure, the possible circuits and bad edges are extracted from

the regular bipartite graph. In the second procedure, the bad

edges are rearranged to obtain the perfect color matching. The

depth first search (DFS) algorithm is used in this paper for

traversing the bipartite vertices to find the closed path, open

path, incomplete components, and bad edges. By the proposed

algorithm, the proper edge coloring of D – regular bipartite

multi-graph can be obtained in O (D.V) time.

Keywords—matching; edge-coloring; complexity; bipartite

multigraph; DFS

I. INTRODUCTION

An edge coloring of a Graph is one of the well-known,
exoteric researched topics in the arena of graph theory. Edge
coloring of a graph G is used various colors, so that, the
adjacent edges are obtained different colors. By using this
concept of edge coloring many real-world problems can be
solved. An edge coloring has applications in scheduling
problems and in frequency assignment for fiber optic
networks. It also used to solve the timetabling problem,
register allocation, pattern matching, designing seating plans,
solving Sudoku puzzles and so on.

This section provides a descriptive summary of some
methods that have been implemented and tested at graph
theory for solving edge coloring problems. This topic has
gained importance for the purpose of efficient edge color
matching in the different graphs. For example, in [1], proposed
a method for edge coloring in which every (3, Δ)-bipartite
graph G, chromatic index ≤ 4Δ. This paper only considered the
(3, Δ)-bipartite simple graph. In [2], proposed an edge coloring
method for course timetabling. One-sided interval colorings of
a bipartite graph method are introduced in [3]. For any graph
G with bipartite set (X, Y) where authors present upper

 (G, X) for classes of bipartite graphs G with maximum

degree ∆ (G) at most 9. In particular, if ∆ (G) = 4, then

(G, X) ≤ 6 and so on. In [4], authors derived a theorem to find

the closed paths from C =MN for matching M and N. A

closed path C can be found in (|C|) time on average. This
theorem helped to develop the proposed algorithm for minimal
edge-coloring. This concept of open and closed path can be
easily obtained from this theorem.

In [5], showed a theorem in which any edge color
matching of a complete bipartite graph Kn,n contains 18
vertexes with three colors. This method creates disjoint
monochromatic cycles which together cover all vertices. The
minimum number of cycles is required for this type of
covering is 5. In [6], proposed an algorithm to find out two
disjoint matching M1 and M2 for a given (X, Y) bipartite graph

with set SX, where, M1 saturates X and M2 saturates S. The
problem was solved by finding and appropriate factor of the
graph when |S|≥|X|-1. In [7], proved a method for two bipartite
graphs G and H, where, H is a fixed graph whose vertices will
be shown as colors. And H-coloring of a graph G is a process
of assigning colors for preserving adjacency in graph G.

In this paper, an algorithm is proposed that is developed to
find a perfect color matching of a regular bipartite multigraph.
This is done by dealing edge coloring with lower time
complexity. For that, the proposed method is divided into
some parts that are run with an independent time complexity
and helps to reduce the overall time complexity.

The edge coloring of a bipartite multigraph is highly
related to finding a perfect matching efficiently. To obtain the
perfect edge color matching the proposed method is divided
into two parts. In the first part, the Depth First Search (DFS)
algorithm is used to extract the closed and opened path circuits
as well as bad edges. In the second part, the bad edges are
rearranged to find the perfect edge color matching.

The rest of the paper is organized as follows. The
preliminaries of the graph theory are described in Section II.
The proposed minimal edge color matching algorithm is
introduced in the next section. Case studies are described in
Section IV. Experimental results and discussions are explained
in Section V. The papers are concluded in Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

251 | P a g e

www.ijacsa.thesai.org

II. PRELIMINARIES

A Graph G is an ordered pair G = (V, E) along with a set V
of vertices, nodes or points simultaneously with a set E of
edges, which are two elements subsets of V. On the other
hand, Graph coloring problem is a process of marking out
colors from definitive components of a graph subject to certain
obligations. There are two terms of Graph coloring which are
edge coloring and vertex coloring. In this paper, an algorithm
is developed for edge coloring. A Graph is said to be regular
when every vertex has the same degree. Where, a graph is said
to be bipartite which has vertices and also can be separated
into two disuniting sets (U, V). Multigraph is a graph which
has multiple edges and all the edges have similar finishing
nodes. The edges associate with a vertex inside U to another
one V is termed as a closed path. On the other hand, a path in
which the first and last vertices are distinct is thread as an
open path. Furthermore, a matching in a graph G is a set of
pairwise disjoint edges. The edge coloring of bipartite
multigraph is highly related to find a perfect matching
efficiently.

III. ALGORITHM FOR MINIMAL EDGE COLORING

Assume that, G (V, E) is a regular graph. To achieve this
regular graph every vertex added the edges such that every
vertex has degree exactly D. In the whole description the
graph circuits are considered as a closed path, whereas, the set
of paths may consist of opened paths and/or closed paths. So,
when a path sets are considered then there may be consisting
of opened paths or closed paths.

The method of Alexander Schriver’s [4] is applied in this
paper. In that paper, the authors derived a theorem to find the

closed paths of C=M N for matching M and N and a closed

path C can be found in |(C)| time on average. Accordingly,
the regular matching from the graph is computed to extract the
close and open paths. The matching is colored and removed
from the graph. This process is applied recursively to extract
all matching.

Let, C1, C2, are closed paths that can be constructed
from the graph G. Let, VC1, VC2, are the set of vertices of
the closed path C1, C2, respectively. In this paper some
closed paths are found i.e., C1, C2, such that

Vc1Vc2....V and Vc1Vc2....=. This means more than
one closed path from a graph G can be received, where the
vertices are disjoint. These received closed paths are produce
two full matching. However, it is not possible to get closed
paths that cover entire vertex in G. If it is possible to add two
full matching of G then it may possible to obtain one or more
closed path. So, after receiving D/2 closed path sets another
set of edges are found that holds at most V edges. Note that, at
most V number of edges in closed path set can be found. And
to achieve these it may needs to find the closed path for
several times.

Theorem 1: A perfect matching in a regular bipartite graph

can be found in  (V) time.

Proof: To prove this theorem, in this paper the
Alexander Schriver’s [4] is considered to get the perfect

matching. It is proved from [4] is that it takes |(C)| time to
get a closed path and edges in the closed path are equally
decomposed into two matchings. If the average open path size

is L then it will take (L) times to get the opened paths.
According to Alexander Schriver’s, the union of the two
matching construct at least one closed path. It is also possible
to get more than one disjoint closed paths and/or open paths by
the union of two full matching.

In this proposed method, one or more disjoint paths are
taken such that each vertex reduces its degree by maximum
two. This process will be continued by using DFS. After that,
checking each closed path where the number of vertices must
be equal to the number of edges. If this condition is not
satisfied then start the DFS again to find another closed path.
After getting the entire closed path, the process is terminated
and starts to get the open paths. In the normal situations all the
vertices in G within the closed path set couldn’t be found.
However, using this theorem the maximum number of closed
path can be found. There are many vertices that are not visited
in the graph. For that, find one or more opened path associated
with these non-visited vertices and decomposes them into two
matchings.

In this method, the maximum V/2 number of closed path or
V/2 number of opened path can be found in each time and
maximum V number odd edges can be found in the paths.
Every closed or opened path will possibly be minimized by its
length. Then the closed and opened path’s edges are
alternatively distributed into two matching. While finding the

paths in this method is required V+V/2 =  (V) time. Hence, 
(V) time is needed to find a perfect matching.

Theorem 2: A proper edge coloring of a D-regular

bipartite multigraph can be found in  (D.V) time.

Proof: According to Theorem 1 all closed path set can be
computed by D/2 times and found D number of matching.
However, all time these types of matching are not possible by
this theorem. For this reason, two different processes are
required for finding the D number of matching. In process 1,
the possible closed and opened paths are extracted from the
graph. And the incomplete component can be identified as bad
edges. In process 2, the bad edges are rearranged at incomplete
matching to find the D number of matching.

Procedure 1: Extraction of possible paths

Step1: Taking a node from graph for finding closed path

Fig. 1(a) is the processing example to describe the steps of
the theorem. For finding the closed path from the graph, the
searching is started from vertex 1 in Fig. 1(a).

Step 2: From the starting node a closed path using DFS is
found and is removed it from the graph

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

252 | P a g e

www.ijacsa.thesai.org

 (a) (b) (c)

Fig. 1. Processing example: a) 4-regular bipartite multi-graph, b) first closed
path with vertex 1, 2, 3, 6 c) all closed path from Fig. 1(a)

As the graph which contains the 10 vertices with degree 4.
The closed and opened paths are obtained by reducing each
vertex degree by two. According to step 2, from the starting
node 1 the first closed path is found with the vertex 1, 2, 3, 6,
1 is shown in Fig. 1(b). By traversing the graph using the DFS
the closed paths are obtained that are shown in Fig. 1(c).

Step 3: The edges in the closed path are distributed into
two matching

The closed path in the Fig. 1(b) is distributed in two path
set shown in Fig. 2(a) and Fig. 2(b). The closed paths that are
in the Fig. 1(c) are distributed into two paths shown in Fig.
2(c) and Fig. 2(d).

 (a) (b) (c) (d)

Fig. 2. The processing example of edge distribution for matching: a) and b)

matching from Fig. 1(b), c) and b) matching form Fig. 1(c)

Step 4: If all the vertices are not traversed then repeat the
process from Step 1 to Step 3 for non-visited vertices

 (a) (b) (c)

Fig. 3. Processing example of closed path extraction by repeated process: a)

the closed path by repeated process, b) and c) matching from Fig. 3(a)

Since the vertices 9 and 10 in Fig. 1(a) are not visited by
the DFS, Step 1 to step 3 have to be repeated. This repeating
procedure traces the other closed paths that are not extracted
by the previous steps shown in Fig. 3(a). The closed path in
the Fig. 3(a) is distributed in two path sets that are shown in
Fig. 3(b) and Fig. 3(c).

Step 5: If the remaining vertices do not make closed paths
then start to find the opened paths

 (a) (b)

Fig. 4. The processing example of finding the opened path: a) and b) opened

a paths from Fig. 1(a)

The opened path can be obtained from the vertices that are
not used in the closed path. According to the Fig. 1(c), vertex
9 and 10 are not used to create any closed path. From Fig.
3(a), vertex 7 and 6 are not used to create any closed path.
Those vertices are not connected by any edge. However,
according to Fig. 1(a), vertex 9 and 10 as well as vertex 7 and
6 are connected by two separated edges. These separate edges
are considered as opened path that are shown in Fig. 4(a) and
Fig. 4(b).

Step 6: The edges of an opened path will be distributed in
the matching (matching found in step 3).

 (a) (b)

Fig. 5. The processing example of distributing opened paths into the
matching: a) and b) open path in Fig. 4(a) and Fig. 4(b) are distributed into

matching in Fig. 2(c) and Fig. 2(d)

The opened path shows in Fig. 4(a) and Fig. 4(b) are
distributed in any two incomplete matching from Fig. 2(c),
Fig. 2(d) as well as Fig. 3(b), and Fig. 3(c). In this case, the
opened path in Fig. 4(a) and Fig. 4(b) are distributed in
incomplete matching in Fig. 2(c) and Fig. 3(c) respectively.
The remaining incomplete matching will be reconstructed in
the procedure two.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

253 | P a g e

www.ijacsa.thesai.org

Step 7: While all the vertices are traversed then switch for
the next closed path set.

 (a) (b)

Fig. 6. The processing example of extracting components: a) components

from the Fig. 2(d), b) components from the Fig. 3(b)

Step 8: Identify the component’s (the vertices that have no
edges) of an incomplete matching in a set

Since, the Fig. 2(d) and Fig. 3(b) are contained
components, i.e., vertex 9, 10 and vertex 7, 6. That’s why; Fig.
2(d) and Fig. 3(b) are considered as incomplete matching.

After D/2 iteration, the process terminates, and gets D/2
numbers of incomplete matching and D/2 number of complete
matchings. According to the processing example, each vertex
has a degree of 4. The iteration process is performed in this
processing example is two which is 4/2=2.

The algorithm in procedure 1 runs in O (D.V) time. This is
obtained by multiplication of the number of paths being found
and the total number of edges in the paths by D/2 iteration,

i.e., D/2*(V+ (V/2)) =3DV/4=  (D.V).

After completing the procedure 1, there may exist many
edges in the graph G that are not used while creating the
closed and opened path are considered as bad edges.

Procedure 2: Finding the bad edges and rearranging them
for perfect matching

Step 1: The remaining bad edges need to be re-distributed
into an incomplete matching i.e., Fig. 2(d) and Fig. 3(b).
According to the Fig. 1(a) only two edges are not used while
creating the closed path that is edge(7, 10) and edge (9, 6)
shown in Fig. 7(a). The bad edges are re-distributed into
incomplete matching of Fig. 2(d).

 (a) (b) (c) (d)

Fig. 7. The processing example of the bad edges: a) bad edges from Fig.

1(a), b) adjacent
edges after inserting the bad edge in Fig. 2(d), c) final bad edge set, d) final

distribution of the bad edges

To re-distribute the bad edges of Fig. 7(a) into an
incomplete matching i.e., Fig. 2(d), firstly traverse the
incomplete matching by DFS to find the component. Here, the
component is vertex 9 in Fig. 2(d). After that, remove the bad
edge that is connected to vertex 9 from the bad edge set. This
bad edge insertion may cause two adjacent edges in the
matching as shown in Fig. 7(b). In this case, the bad edge that
is connected to the vertex 9 is removed from the bad edge set
and inserts into the other adjacent edge in the bad edge set i.e.,
edge (1, 6) as shown in Fig. 7(c). Finally, insert all the edges
from Fig. 2(d) into Fig. 7(c) except the board edges shown in
Fig. 7(d). Similarly, the bad edges are also re-distributed into
incomplete matching of Fig. 3(b) is shown in Fig. 8.
According to procedure one, two complete matching are found
that are shown in Fig. 9(a) and Fig. 9(b) with different colors.
By procedure two, another two complete matching are found
that are shown in Fig. 10(a) and Fig. 10(b) with other different
colors.

 (a) (b) (c) (d)

Fig. 8. The processing example of the bad edges: a) bad edges from Fig.

1(a), b) adjacent
edges after inserting the bad edge in Fig. 3(b), c) final bad edge set, d) final

distribution of the bad edges

 (a) (b)

Fig. 9. The processing example of complete matching: (a) and (b) complete

matching from procedure one, c) and d) complete matching from procedure
one

(a) (b)

Fig. 10. The processing example of complete matching: (a) and (b) complete

matching from procedure two, c) and d) complete matching from procedure

two

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

254 | P a g e

www.ijacsa.thesai.org

The perfect edge coloring of Fig. 1(a) is found after
combining all the complete matching in Fig. 9 and Fig. 10 that
is shown in Fig.11.

Step 2: If it is unable to redistribute the bad edges in the
incomplete matching then the same process can be followed
for full matching and incomplete matching sequentially until
re-distributed the bad edges into the D-matching’s.

After  (D.V) times, the bad edge sets and the disjoint
vertex sets are similar and re-distributed them according to the
matching. After finding D-matching color the edges are

colored into D-color. This part of the algorithm takes  (D.V)
times. Because each bad edge has (2D-2) adjacent edges, so, to
re-distribute each bad edge to a matching perfectly, it needs
maximum (2D-2) iteration. So maximum V number of bad

edges needs to iterate for V*(2D-2) = 2D.V-2V =  (D.V)
times on average.

So, the overall time complexity of edge color matching
algorithm is O (D.V) +O (D.V) =O (D.V).

Fig. 11. The processing example of final color matching: the final edge

coloring of Fig. 1 with perfect matching

IV. CASE STUDY

Case 1: In the following case study shows a bipartite
graph that has 8 vertices, 16 edges and maximum degree 4.
Here, the graph is 4-regular.

Fig. 12. The processing example of the case study: A regular bipartite

multigraph with 8 vertices and degree 4

(a) (b)

Fig. 13. The processing example of finding closed paths from Fig. 12: a) and

b) the set of closed paths from Fig. 12

Fig. 13(a) and Fig. 13(b) shows two sets of the closed path
from which four matching can be achieved that are shown in
Fig. 14 and Fig. 15. Fig. 14 shows two matching that is
achieved from the Fig. 13(a) closed path sets. And Fig. 15
shows two matching which is achieved from the Fig. 13(b)
closed path sets.

 (a) (b)

Fig. 14. Processing example of matching found: a) and b) matching from Fig.

13(a)

 (a) (b)

Fig. 15. The processing example of matching: a) and b) matching from Fig.
13(b)

After getting these four matching shown in Fig. 14 and
Fig. 15 color the edges of each matching with separate colors
to represent the edge color matching shown in Fig. 16.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

255 | P a g e

www.ijacsa.thesai.org

Fig. 16. Processing example final color matching: the final edge coloring of

Fig. 11 with perfect matching

Case 2: In the following case study shows a bipartite graph
that has 10 vertices, 20 edges and maximum degree 4 with 1
multiple edges.

(a) (b)

Fig. 17. The edge coloring of with perfect matching: a) input graph and b)

final edge coloring with perfect matching

Case 3: This is a regular bipartite graph with no multiple
edges. This graph consists of 20 edges, 10 vertices and 4 edges
in every vertex, i.e., degree 4.

(a) (b)

Fig. 18. The edge coloring of with perfect matching: a) input graph and b)

final edge coloring with perfect matching

V. EXPERIMENTAL RESULTS

In this paper, four different types of bipartite graph
including multi-graphs are used to verify the proposed edge
color matching algorithm. The first graph is used in the

processing example and describes the proposed algorithm step
by step. Other three graphs are shown in the case study, where
case 1 is explained shortly with processing example. Case 2
and case 3 are shows the output only. The experimental results
run time of procedure 1 that is described in Theorem 2 for the
four types of the regular bipartite graph is shown in Table I.
Accordingly, the experimental results run time of procedure 2
that is describes in Theorem 2 for the four types of the regular
bipartite graph is shown in Table II. From the experimental
result in Table I and Table II it is seen that total runtime is less
than O (D.V).

TABLE. I. THE EXPERIMENTAL RUNTIME FOR PROCEDURE 1 THEOREM 2

Input Graph
Number of
vertices (V)

Degree of the
graph (D)

Runtime for
procedure 1

Processing example
(Fig. 1(a))

8
4

16

Case 1 (Fig. 11(a)) 10 4 33

Case 2 (Fig. 14(a)) 10 4 34

Case 3 (Fig. 15(a)) 10 4 26

TABLE. II. THE EXPERIMENTAL RUNTIME FOR PROCEDURE 2 THEOREM 2

Input Graph
Number of
vertices (V)

Degree of the
graph (D)

Runtime for
procedure 1

Processing example
(Fig. 1(a))

8 4 0

Case 1 (Fig. 11(a)) 10 4 4

Case 2 (Fig. 14(a)) 10 4 4

Case 3 (Fig. 15(a)) 10 4 14

VI. CONCLUSIONS

This paper has been presented an algorithm of edge
coloring for finding perfect matching. This paper considered
the regular bipartite multigraphs. To prove the algorithm two
theorems for edge coloring is considered. The first theorem
shows the perfect matching of a regular bipartite graph and the
second theorem shows proper edge coloring of a D-regular
bipartite multigraph. The overall time complexity of the
proposed edge color matching algorithm is O (D.V) +O (D.V
= O (D.V) times. The algorithm reduces overall time
complexity. Experimental results show that the total runtime is

less than  (D.V) time. A graph with large vertex cannot be
considered with the proposed theorem. In future, this work
will be extended to develop an algorithm in order to solve the
large volume of the graph.

REFERENCES

[1] J. Bensmail, A. Lagoutt, & P. Valicov,outt, & P. Valicov, “Strong
edge-coloring edge coloring with perfect matching of (3, Δ)-bipartite
graphs,” Discrete Mathematics, Vol. 339, No. 1, pp. 391-398, 2016.

[2] H. A. Razak, Z. Ibrahim, and N.M. Hussin,” Bipartite graph edge
coloring approach to course timetabling,” In 2010 International
Conference on Information Retrieval & Knowledge Management,
(CAMP), pp. 229-234, IEEE, March, 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

256 | P a g e

www.ijacsa.thesai.org

[3] C. J. Casselgren and B. Toft “One-sided interval edge-
colorings of bipartite graphs,” Discrete Mathematics, Vol. 339, pp.
2628-2639, 2016.

[4] A. Schrijver, “Bipartite Edge Coloring in O(Δm) Time, “SIAM Journal
on Computing,” Vol. 28, No. 3, pp. 841-846, 1998.

[5] R.Lang, O.Schaudt, and M. Stein, ”Partitioning 3-edge-

coloured complete bipartite graphs into monochromatic cycles,”
Electronic Notes in Discrete Mathematics, Vol. 49, pp. 787-794, 2015.

[6] G. J. Puleo, “Complexity of a disjoint matching problem on
bipartite graphs,” Information Processing Letters, 2016.

[7] J. Engbers and D. Galvin, “H-colouring bipartite graphs,
” Journal of Combinatorial Theory, Series B, Vol. 102, No. 3, pp. 726-
742, 2012.

